Underwater threat recognition: Are automatic target classification algorithms going to replace expert human operators in the near future?

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdragepeer review

Samenvatting

In this paper, different human/machine strategies are tested in order to evaluate their performance in underwater threat recognition. Sonar images collected using synthetic aperture sonar (SAS) and side scan sonar (SSS) during real mine countermeasures exercises are used. Data are collected over a test area on the Belgian Continental Shelf, where several targets were deployed. Image resolution is divided in three categories: (1) up to 5cm pixel size, (2) between 5cm and 10cm pixel size, (3) larger than 10cm pixel size. Soil complexity is also evaluated and used to build up different strategies. Results demonstrate the utility of considering the human operator as an integral part of the automatic underwater object recognition process, as well as how automated algorithms can extend and complement human performances.

Originele taal-2Engels
TitelOCEANS 2019 - Marseille, OCEANS Marseille 2019
UitgeverijInstitute of Electrical and Electronics Engineers Inc.
ISBN van elektronische versie9781728114507
DOI's
StatusGepubliceerd - jun. 2019
Evenement2019 OCEANS - Marseille, OCEANS Marseille 2019 - Marseille, Frankrijk
Duur: 17 jun. 201920 jun. 2019

Publicatie series

NaamOCEANS 2019 - Marseille, OCEANS Marseille 2019
Volume2019-June

Congres

Congres2019 OCEANS - Marseille, OCEANS Marseille 2019
Land/RegioFrankrijk
StadMarseille
Periode17/06/1920/06/19

Vingerafdruk

Duik in de onderzoeksthema's van 'Underwater threat recognition: Are automatic target classification algorithms going to replace expert human operators in the near future?'. Samen vormen ze een unieke vingerafdruk.

Citeer dit