UNCOVER: Development of an efficient steganalysis framework for uncovering hidden data in digital media

Vaila Leask, Rémi Cogranne, Dirk Borghys, Helena Bruyninckx

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdragepeer review

Samenvatting

This paper presents the general goals of Horizon 2020 project UNCOVER, whose overall purpose is to close the gap between academic work and operational needs in the fields of data-hiding. While digital data-hiding is a relatively new area of research, our motivation in this project has been rooted in the growing gap between the academic community and the operational needs of a "real-life"scenario of object inspection in order to UNCOVER the presence of data secretly hidden. As well as an oversight into the structure of UNCOVER, our paper presents an empirical study on the impact of specifically training a detection method for a given data-hiding scheme, the so-called Stego-Source Mismatch, as an example of unexplored issues that raises important and mostly ignored consequences within the operational context the UNCOVER project targets.

Originele taal-2Engels
TitelProceedings of the 17th International Conference on Availability, Reliability and Security, ARES 2022
UitgeverijAssociation for Computing Machinery
ISBN van elektronische versie9781450396707
DOI's
StatusGepubliceerd - 23 aug. 2022
Evenement17th International Conference on Availability, Reliability and Security, ARES 2022 - Vienna, Oostenrijk
Duur: 23 aug. 202226 aug. 2022

Publicatie series

NaamACM International Conference Proceeding Series

Congres

Congres17th International Conference on Availability, Reliability and Security, ARES 2022
Land/RegioOostenrijk
StadVienna
Periode23/08/2226/08/22

Vingerafdruk

Duik in de onderzoeksthema's van 'UNCOVER: Development of an efficient steganalysis framework for uncovering hidden data in digital media'. Samen vormen ze een unieke vingerafdruk.

Citeer dit