Random walk on temporal networks with lasting edges

Julien Petit, Martin Gueuning, Timoteo Carletti, Ben Lauwens, Renaud Lambiotte

Onderzoeksoutput: Bijdrage aan een tijdschriftArtikelpeer review

Samenvatting

We consider random walks on dynamical networks where edges appear and disappear during finite time intervals. The process is grounded on three independent stochastic processes determining the walker's waiting time, the up time, and the down time of the edges. We first propose a comprehensive analytical and numerical treatment on directed acyclic graphs. Once cycles are allowed in the network, non-Markovian trajectories may emerge, remarkably even if the walker and the evolution of the network edges are governed by memoryless Poisson processes. We then introduce a general analytical framework to characterize such non-Markovian walks and validate our findings with numerical simulations.

Originele taal-2Engels
Artikelnummer052307
TijdschriftPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume98
Nummer van het tijdschrift5
DOI's
StatusGepubliceerd - 20 nov. 2018

Vingerafdruk

Duik in de onderzoeksthema's van 'Random walk on temporal networks with lasting edges'. Samen vormen ze een unieke vingerafdruk.

Citeer dit