Practical Deep Feature-Based Visual-Inertial Odometry

Charles Hamesse, Michiel Vlaminck, Hiep Luong, Rob Haelterman

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdragepeer review

Samenvatting

We present a hybrid visual-inertial odometry system that relies on a state-of-the-art deep feature matching front-end and a traditional visual-inertial optimization back-end. More precisely, we develop a fully-fledged feature tracker based on the recent SuperPoint and LightGlue neural networks, that can be plugged directly to the estimation back-end of VINS-Mono. By default, this feature tracker returns extremely abundant matches. To bound the computational complexity of the back-end optimization, limiting the number of used matches is desirable. Therefore, we explore various methods to filter the matches while maintaining a high visual-inertial odometry performance. We run extensive tests on the EuRoC machine hall and Vicon room datasets, showing that our system achieves state-of-the-art odometry performance according relative pose errors.

Originele taal-2Engels
TitelProceedings of the 13th International Conference on Pattern Recognition Applications and Methods
RedacteurenModesto Castrillon-Santana, Maria De Marsico, Ana Fred
UitgeverijScience and Technology Publications, Lda
Pagina's240-247
Aantal pagina's8
ISBN van geprinte versie9789897586842
DOI's
StatusGepubliceerd - 2024
Evenement13th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2024 - Rome, Italië
Duur: 24 feb. 202426 feb. 2024

Publicatie series

NaamInternational Conference on Pattern Recognition Applications and Methods
Volume1
ISSN van elektronische versie2184-4313

Congres

Congres13th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2024
Land/RegioItalië
StadRome
Periode24/02/2426/02/24

Vingerafdruk

Duik in de onderzoeksthema's van 'Practical Deep Feature-Based Visual-Inertial Odometry'. Samen vormen ze een unieke vingerafdruk.

Citeer dit