Pattern formation in a two-component reaction–diffusion system with delayed processes on a network

Julien Petit, Malbor Asllani, Duccio Fanelli, Ben Lauwens, Timoteo Carletti

Onderzoeksoutput: Bijdrage aan een tijdschriftArtikelpeer review

Samenvatting

Reaction–diffusion systems with time-delay defined on complex networks have been studied in the framework of the emergence of Turing instabilities. The use of the Lambert W-function allowed us to get explicit analytic conditions for the onset of patterns as a function of the main involved parameters, the time-delay, the network topology and the diffusion coefficients. Depending on these parameters, the analysis predicts whether the system will evolve towards a stationary Turing pattern or rather to a wave pattern associated to a Hopf bifurcation. The possible outcomes of the linear analysis overcome the respective limitations of the single-species case with delay, and that of the classical activator–inhibitor variant without delay. Numerical results gained from the Mimura–Murray model support the theoretical approach.

Originele taal-2Engels
Pagina's (van-tot)230-249
Aantal pagina's20
TijdschriftPhysica A: Statistical Mechanics and its Applications
Volume462
DOI's
StatusGepubliceerd - 15 nov. 2016

Vingerafdruk

Duik in de onderzoeksthema's van 'Pattern formation in a two-component reaction–diffusion system with delayed processes on a network'. Samen vormen ze een unieke vingerafdruk.

Citeer dit