Neural-network based stateless ice detection in ERS scatterometer data

Xavier Neyt, Pauline Pettiaux, Nicolas Manise, Marc Acheroy

Onderzoeksoutput: Bijdrage aan een tijdschriftCongresartikelpeer review

5 Downloads (Pure)

Samenvatting

A new scheme to perform stateless ice/sea discrimination in ERS scatterometer data is proposed. This method consists in combining several methods proposed in the literature using a Bayesian framework. Each of the combined method is first reviewed in a consistent framework. In particular, the ice/sea probability according to each individual criterion is extracted using a neural network. The proposed method is shown to provide acceptable results even without taking into account historic data, i.e. without performing temporal averaging.

Originele taal-2Engels
Artikelnummer566
Pagina's (van-tot)877-884
Aantal pagina's8
TijdschriftEuropean Space Agency, (Special Publication) ESA SP
Nummer van het tijdschrift572
StatusGepubliceerd - 2005
Evenement2004 Envisat and ERS Symposium - Salzburg, Oostenrijk
Duur: 6 sep. 200410 sep. 2004

Vingerafdruk

Duik in de onderzoeksthema's van 'Neural-network based stateless ice detection in ERS scatterometer data'. Samen vormen ze een unieke vingerafdruk.

Citeer dit