Maximum Entropy Networks Applied on Twitter Disinformation Datasets

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdragepeer review

Samenvatting

Identifying and detecting disinformation is a major challenge. Twitter provides datasets of disinformation campaigns through their information operations report. We compare the results of community detection using a classical network representation with a maximum entropy network model. We conclude that the latter method is useful to identify the most significant interactions in the disinformation network over multiple datasets. We also apply the method to a disinformation dataset related to COVID-19, which allows us to assess the repeatability of studies on disinformation datasets.

Originele taal-2Engels
TitelComplex Networks and Their Applications X - Volume 2, Proceedings of the 10th International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2021
RedacteurenRosa Maria Benito, Chantal Cherifi, Hocine Cherifi, Esteban Moro, Luis M. Rocha, Marta Sales-Pardo
UitgeverijSpringer Science and Business Media Deutschland GmbH
Pagina's132-143
Aantal pagina's12
ISBN van geprinte versie9783030934125
DOI's
StatusGepubliceerd - 2022
Evenement10th International Conference on Complex Networks and Their Applications, COMPLEX NETWORKS 2021 - Madrid, Spanje
Duur: 30 nov. 20212 dec. 2021

Publicatie series

NaamStudies in Computational Intelligence
Volume1016
ISSN van geprinte versie1860-949X
ISSN van elektronische versie1860-9503

Congres

Congres10th International Conference on Complex Networks and Their Applications, COMPLEX NETWORKS 2021
Land/RegioSpanje
StadMadrid
Periode30/11/212/12/21

Vingerafdruk

Duik in de onderzoeksthema's van 'Maximum Entropy Networks Applied on Twitter Disinformation Datasets'. Samen vormen ze een unieke vingerafdruk.

Citeer dit