TY - GEN
T1 - Matched filter based detection of floating mines in IR spacetime
AU - Borghgraef, Alexander
AU - Lapierre, Fabian
AU - Philips, Wilfried
AU - Acheroy, Marc
PY - 2009
Y1 - 2009
N2 - Ship-based automatic detection of small floating objects on an agitated sea surface remains a hard problem. Our main concern is the detection of floating mines, which proved a real threat to shipping in confined waterways during the first Gulf War, but applications include salvaging,search-and-rescue and perimeter or harbour defense. IR video was chosen for its day-and-night imaging capability, and its availability on military vessels. Detection is difficult because a rough sea is seen as a dynamic background of moving objects with size order, shape and temperature similar to those of the floating mine. We do find a determinant characteristic in the target's periodic motion, which differs from that of the propagating surface waves composing the background. The classical detection and tracking approaches give bad results when applied to this problem. While background detection algorithms assume a quasi-static background, the sea surface is actually very dynamic, causing this category of algorithms to fail. Kalman or particle filter algorithms on the other hand, which stress temporal coherence, suffer from tracking loss due to occlusions and the great noise level of the image. We propose an innovative approach. This approach uses the periodicity of the objects movement and thus its temporal coherence. The principle is to consider the video data as a spacetime volume similar to a hyperspectral data cube by replacing the spectral axis with a temporal axis. We can then apply algorithms developed for hyperspectral detection problems to the detection of small floating objects. We treat the detection problem using multilinear algebra, designing a number of finite impulse response filters (FIR) maximizing the target response. The algorithm was applied to test footage of practice mines in the infrared
AB - Ship-based automatic detection of small floating objects on an agitated sea surface remains a hard problem. Our main concern is the detection of floating mines, which proved a real threat to shipping in confined waterways during the first Gulf War, but applications include salvaging,search-and-rescue and perimeter or harbour defense. IR video was chosen for its day-and-night imaging capability, and its availability on military vessels. Detection is difficult because a rough sea is seen as a dynamic background of moving objects with size order, shape and temperature similar to those of the floating mine. We do find a determinant characteristic in the target's periodic motion, which differs from that of the propagating surface waves composing the background. The classical detection and tracking approaches give bad results when applied to this problem. While background detection algorithms assume a quasi-static background, the sea surface is actually very dynamic, causing this category of algorithms to fail. Kalman or particle filter algorithms on the other hand, which stress temporal coherence, suffer from tracking loss due to occlusions and the great noise level of the image. We propose an innovative approach. This approach uses the periodicity of the objects movement and thus its temporal coherence. The principle is to consider the video data as a spacetime volume similar to a hyperspectral data cube by replacing the spectral axis with a temporal axis. We can then apply algorithms developed for hyperspectral detection problems to the detection of small floating objects. We treat the detection problem using multilinear algebra, designing a number of finite impulse response filters (FIR) maximizing the target response. The algorithm was applied to test footage of practice mines in the infrared
UR - http://www.scopus.com/inward/record.url?scp=70350513296&partnerID=8YFLogxK
U2 - 10.1117/12.830224
DO - 10.1117/12.830224
M3 - Conference contribution
AN - SCOPUS:70350513296
SN - 9780819477880
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Electro-Optical Remote Sensing, Photonic Technologies, and Applications III
T2 - Electro-Optical Remote Sensing, Photonic Technologies, and Applications III
Y2 - 1 September 2009 through 3 September 2009
ER -