Fusion of PolSAR and PolInSAR data for land cover classification

M. Shimoni, D. Borghys, R. Heremans, C. Perneel, M. Acheroy

Onderzoeksoutput: Bijdrage aan een tijdschriftArtikelpeer review

Samenvatting

The main research goal of this study is to investigate the complementarity and fusion of different frequencies (L- and P-band), polarimetric SAR (PolSAR) and polarimetric interferometric (PolInSAR) data for land cover classification. A large feature set was derived from each of these four modalities and a two-level fusion method was developed: Logistic regression (LR) as 'feature-level fusion' and the neural-network (NN) method for higher level fusion. For comparison, a support vector machine (SVM) was also applied. NN and SVM were applied on various combinations of the feature sets. The results show that for both NN and SVM, the overall accuracy for each of the fused sets is better than the accuracy for the separate feature sets. Moreover, that fused features from different SAR frequencies are complementary and adequate for land cover classification and that PolInSAR is complementary to PolSAR information and that both are essential for producing accurate land cover classification.

Originele taal-2Engels
Pagina's (van-tot)169-180
Aantal pagina's12
TijdschriftInternational Journal of Applied Earth Observation and Geoinformation
Volume11
Nummer van het tijdschrift3
DOI's
StatusGepubliceerd - jun. 2009

Vingerafdruk

Duik in de onderzoeksthema's van 'Fusion of PolSAR and PolInSAR data for land cover classification'. Samen vormen ze een unieke vingerafdruk.

Citeer dit