Comparison of algorithms for the classification of polarimetric SAR data

V. Alberga, D. Borghys, G. Satalino, D. K. Staykova, A. Borghgraef, F. Lapierre, C. Perneel

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdragepeer review

Samenvatting

Most of the current SAR systems aquire fully polarimetric data where the obtained scattering information can be represented by various coherent and incoherent parameters. in previous contributions we reviewed these parameters in terms of their "utility" for landcover classification, here, we investigate their impact on several classification algoritms. Three classifiers: the minimum-distance classifier, a multi-layer perceptron (MLP) and one based on logistic regression (LR) were applied on an L-Band scene acquired by the E-SAR sensor. MLP and LR were chosen because they are robust w.r.t. the data statistics. An interesting result is that MLP gives better results on the coherent parameters while LR gives better results on the incoherent parameters.

Originele taal-2Engels
TitelImage and Signal Processing for Remote Sensing XV
DOI's
StatusGepubliceerd - 2009
EvenementImage and Signal Processing for Remote Sensing XV - Berlin, Duitsland
Duur: 31 aug. 20093 sep. 2009

Publicatie series

NaamProceedings of SPIE - The International Society for Optical Engineering
Volume7477
ISSN van geprinte versie0277-786X

Congres

CongresImage and Signal Processing for Remote Sensing XV
Land/RegioDuitsland
StadBerlin
Periode31/08/093/09/09

Vingerafdruk

Duik in de onderzoeksthema's van 'Comparison of algorithms for the classification of polarimetric SAR data'. Samen vormen ze een unieke vingerafdruk.

Citeer dit