Combining wavelets and mathematical morphology to detect changes in time series

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdragepeer review

Samenvatting

In this paper, the problem of detecting changes in time series is addressed. First, the time series is decomposed at multiple scales into wavelet coefficients, in order to obtain a preliminary map of the discontinuities/change points. To select only the relevant ones, we here propose a filtering step based on mathematical morphology. To the best of our knowledge, this is the first time that morphological filters are used in combination with the wavelet transform to address the change point detection problem. The methodology has been validated by analyzing a large set of simulated time series featuring a variable number of change points. For a more comprehensive analysis of the performance, different levels of noise have been also added to the original simulated data.

Originele taal-2Engels
Titel2017 Progress In Electromagnetics Research Symposium - Fall, PIERS - FALL 2017 - Proceedings
UitgeverijElectromagnetics Academy
Pagina's1015-1020
Aantal pagina's6
ISBN van elektronische versie9781538612118
DOI's
StatusGepubliceerd - 2017
Evenement2017 Progress In Electromagnetics Research Symposium - Fall, PIERS - FALL 2017 - Singapore, Singapore
Duur: 19 nov. 201722 nov. 2017

Publicatie series

NaamProgress in Electromagnetics Research Symposium
Volume2017-November
ISSN van geprinte versie1559-9450
ISSN van elektronische versie1931-7360

Congres

Congres2017 Progress In Electromagnetics Research Symposium - Fall, PIERS - FALL 2017
Land/RegioSingapore
StadSingapore
Periode19/11/1722/11/17

Vingerafdruk

Duik in de onderzoeksthema's van 'Combining wavelets and mathematical morphology to detect changes in time series'. Samen vormen ze een unieke vingerafdruk.

Citeer dit