Combining multi-variate statistics and Dempster-Shafer theory for edge detection in multi-channel SAR images

Dirk Borghys, Christiaan Perneel

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukpeer review

Samenvatting

A new scheme for detecting edges in multi-channel SAR images is proposed. The method is applied to a set of two full-polarimetric SAR images, i.e. a P-band and an L-band image. The first step is a low-level edge detector based on multi-variate statistical hypothesis tests. As the spatial resolution of the two SAR bands is not the same, the test is applied to the polarimetric information for each band separately. The multi-variate statistical hypothesis test is used to decide whether an edge of a given orientation passes through the current point. The test is repeated for a discrete number of orientations. Eight orientations are used. The response for the different orientations of the scanning rectangles as well as for different bands is combined using a method based on Dempster-Shafer Theory. The proposed scheme was applied to a multi-channel E-SAR image1 and results are shown and evaluated.

Originele taal-2Engels
TitelLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
RedacteurenFrancisco Jose Perales, Aurelio J. C. Campilho, Nicolas Perez Perez, Nicolas Perez Perez
UitgeverijSpringer
Pagina's97-107
Aantal pagina's11
ISBN van geprinte versie3540402179, 9783540402176
DOI's
StatusGepubliceerd - 2003

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume2652
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Vingerafdruk

Duik in de onderzoeksthema's van 'Combining multi-variate statistics and Dempster-Shafer theory for edge detection in multi-channel SAR images'. Samen vormen ze een unieke vingerafdruk.

Citeer dit