Bayesian estimation vs fuzzy logic for heuristic reasoning

Michel de Mathelin, Christiaan Perneel, Marc Acheroy

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdragepeer review

Samenvatting

In this paper, Bayesian estimation theory and fuzzy logic are used to derive knowledge combination rules for heuristic search algorithms. Such algorithms are typically used with expert systems. Heuristics are used to select candidate solutions or partial solutions of a complex problem whose solution space is too large to be fully explored. The information coming from the various heuristics and from observations made during the search must be combined. Combination and decision rules are first derived based on a probabilistic approach. Then, a fuzzy logic approach is followed and compared with the first approach.

Originele taal-2Engels
Titel1993 IEEE International Conference on Fuzzy Systems
UitgeverijInstitute of Electrical and Electronics Engineers Inc.
Pagina's944-951
Aantal pagina's8
ISBN van geprinte versie0780306155
StatusGepubliceerd - 1993
EvenementSecond IEEE International Conference on Fuzzy Systems - San Francisco, CA, USA
Duur: 28 mrt. 19931 apr. 1993

Publicatie series

Naam1993 IEEE International Conference on Fuzzy Systems

Congres

CongresSecond IEEE International Conference on Fuzzy Systems
StadSan Francisco, CA, USA
Periode28/03/931/04/93

Vingerafdruk

Duik in de onderzoeksthema's van 'Bayesian estimation vs fuzzy logic for heuristic reasoning'. Samen vormen ze een unieke vingerafdruk.

Citeer dit