Automatic generation of statistical shape models in motion

Sofia Scataglini, Robby Haelterman, Damien Van Tiggelen

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdragepeer review

Samenvatting

Statistical body shape modeling (SBSM) is a well-known technique to map out the variability of body shapes and is commonly used in 3D anthropometric analyses. In this paper, a new approach to integrate movement acquired by a motion capture system with a body shape is proposed. This was done by selecting landmarks on a body shape model, and predicting a body shape based on features. Then, a virtual skeleton was generated relative to those landmarks. This skeleton was parented to a body shape, allowing to modify its pose and to add pre-recorded motion to different body shapes in a realistic way.

Originele taal-2Engels
TitelAdvances in Human Factors in Simulation and Modeling - Proceedings of the AHFE 2018 International Conferences on Human Factors and Simulation and Digital Human Modeling and Applied Optimization
RedacteurenDaniel N. Cassenti
UitgeverijSpringer
Pagina's170-178
Aantal pagina's9
ISBN van geprinte versie9783319942223
DOI's
StatusGepubliceerd - 2019
EvenementAHFE International Conferences on Human Factors and Simulation and Digital Human Modeling and Applied Optimization, 2018 - Orlando, Verenigde Staten van Amerika
Duur: 21 jul. 201825 jul. 2018

Publicatie series

NaamAdvances in Intelligent Systems and Computing
Volume780
ISSN van geprinte versie2194-5357

Congres

CongresAHFE International Conferences on Human Factors and Simulation and Digital Human Modeling and Applied Optimization, 2018
Land/RegioVerenigde Staten van Amerika
StadOrlando
Periode21/07/1825/07/18

Vingerafdruk

Duik in de onderzoeksthema's van 'Automatic generation of statistical shape models in motion'. Samen vormen ze een unieke vingerafdruk.

Citeer dit