Applying Sentinel-1 Time Series Analysis to Sugarcane Harvest Detection

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdragepeer review

Samenvatting

Sugarcane is the world's largest crop by production quantity, as reported by the Food and Agriculture Organization of the United Nations. Its growth cycle has a duration of about 12-14 months, and the same plantation can be generally harvested up to 7 times before replanting is needed. In order to both predict the yield and optimize the production processes, sugarcane industries need to be regularly updated on the harvest progress; however, they mainly rely on direct communications from farmers, and this has evident limitations.In this paper we present a method that exploits stacks of Sentinel-1 images for the automatic detection of sugarcane harvest dates. The method has been used to monitor, over a period of 21 months, a large cultivated area in Northern Senegal that comprises 719 sugarcane parcels.The results have shown that the method performs well in terms of both detection and estimation accuracy, and has the potential to be operationally used in the sugarcane production processes.

Originele taal-2Engels
Titel2019 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019 - Proceedings
UitgeverijInstitute of Electrical and Electronics Engineers Inc.
Pagina's1594-1597
Aantal pagina's4
ISBN van elektronische versie9781538691540
DOI's
StatusGepubliceerd - jul. 2019
Evenement39th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019 - Yokohama, Japan
Duur: 28 jul. 20192 aug. 2019

Publicatie series

NaamInternational Geoscience and Remote Sensing Symposium (IGARSS)

Congres

Congres39th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019
Land/RegioJapan
StadYokohama
Periode28/07/192/08/19

Vingerafdruk

Duik in de onderzoeksthema's van 'Applying Sentinel-1 Time Series Analysis to Sugarcane Harvest Detection'. Samen vormen ze een unieke vingerafdruk.

Citeer dit