Accelerating existing non-blind image deblurring techniques through a strap-on limited-memory switched Broyden method

Ichraf Lahouli, Robby Haelterman, Joris Degroote, Michal Shimoni, Geert De Cubber, Rabah Attia

Onderzoeksoutput: Bijdrage aan een tijdschriftArtikelpeer review

Samenvatting

Video surveillance from airborne platforms can suffer from many sources of blur, like vibration, low-end optics, uneven lighting conditions, etc. Many different algorithms have been developed in the past that aim to recover the deblurred image but often incur substantial CPU-time, which is not always available on-board. This paper shows how a "strap-on" quasi-Newton method can accelerate the convergence of existing iterative methods with little extra overhead while keeping the performance of the original algorithm, thus paving the way for (near) real-time applications using on-board processing.

Originele taal-2Engels
Pagina's (van-tot)1288-1295
Aantal pagina's8
TijdschriftIEICE Transactions on Information and Systems
VolumeE101D
Nummer van het tijdschrift5
DOI's
StatusGepubliceerd - mei 2018

Vingerafdruk

Duik in de onderzoeksthema's van 'Accelerating existing non-blind image deblurring techniques through a strap-on limited-memory switched Broyden method'. Samen vormen ze een unieke vingerafdruk.

Citeer dit