A wavelet-based image denoising technique using spatial priors

A. Pizurica, W. Philips, I. Lemahieu, M. Acheroy

Onderzoeksoutput: ONGEPUBLICEERD bijdrage aan congresPaperpeer review

Samenvatting

We propose a new wavelet-based method for image denoising that applies the Bayesian framework, using prior knowledge about the spatial clustering of the wavelet coefficients. Local spatial interactions of the wavelet coefficients are modeled by adopting a Markov Random Field model. An iterative updating technique known as iterated conditional modes (ICM) is applied to estimate the binary masks containing the positions of those wavelet coefficients that represent the useful signal in each subband. For each wavelet coefficient a shrinkage factor is determined, depending on its magnitude and on the local spatial neighbourhood in the estimated mask. We derive analytically a closed form expression for this shrinkage factor.

Originele taal-2Engels
Pagina's[d]296-299
StatusGepubliceerd - 2000
EvenementInternational Conference on Image Processing (ICIP 2000) - Vancouver, BC, Canada
Duur: 10 sep. 200013 sep. 2000

Congres

CongresInternational Conference on Image Processing (ICIP 2000)
Land/RegioCanada
StadVancouver, BC
Periode10/09/0013/09/00

Vingerafdruk

Duik in de onderzoeksthema's van 'A wavelet-based image denoising technique using spatial priors'. Samen vormen ze een unieke vingerafdruk.

Citeer dit