Projecten per jaar
Samenvatting
An accurate model of yield prediction will benefit many aspects of managing growth and harvest of sugarcane crops. In this study Sentinel-1 and Sentinel-2 time-series were used to automatically detect harvest dates of sugarcane fields in the Far North Queensland of Australia. Harvest date information was further used in combination with weather, soil and elevation data to predict sugarcane yield at different time steps over three consecutive growing seasons using machine learning. Our results suggest that harvest dates could be identified with detection rates of 87% and 91% using Sentinel-1 and Sentinel-2 imagery, respectively. Similarly, sugarcane yield could be predicted using Sentinel-1 and Sentinel-2 satellite imagery in conjunction with other geographical attributes with accuracy of 65% as early as 180 days after the previous harvest.
Originele taal-2 | Engels |
---|---|
Titel | 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Proceedings |
Uitgeverij | Institute of Electrical and Electronics Engineers Inc. |
Pagina's | 5167-5170 |
Aantal pagina's | 4 |
ISBN van elektronische versie | 9781728163741 |
DOI's | |
Status | Gepubliceerd - 26 sep. 2020 |
Evenement | 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Virtual, Waikoloa, Verenigde Staten van Amerika Duur: 26 sep. 2020 → 2 okt. 2020 |
Publicatie series
Naam | International Geoscience and Remote Sensing Symposium (IGARSS) |
---|
Congres
Congres | 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 |
---|---|
Land/Regio | Verenigde Staten van Amerika |
Stad | Virtual, Waikoloa |
Periode | 26/09/20 → 2/10/20 |
Vingerafdruk
Duik in de onderzoeksthema's van 'A Satellite-Based Methodology for Harvest Date Detection and Yield Prediction in Sugarcane'. Samen vormen ze een unieke vingerafdruk.Projecten
- 1 Afgelopen
-
EORegions-Science: EORegions-Science
Neyt, X. (Promotor) & Stasolla, M. (Onderzoeker)
1/11/16 → 31/08/18
Project: Onderzoek