Very High Resolution Object-Based Land Use-Land Cover Urban Classification Using Extreme Gradient Boosting

Stefanos Georganos, Tais Grippa, Sabine Vanhuysse, Moritz Lennert, Michal Shimoni, Eleonore Wolff

Résultats de recherche: Contribution à un journalArticleRevue par des pairs

Résumé

In this letter, the recently developed extreme gradient boosting (Xgboost) classifier is implemented in a very high resolution (VHR) object-based urban land use-land cover application. In detail, we investigated the sensitivity of Xgboost to various sample sizes, as well as to feature selection (FS) by applying a standard technique, correlation-based FS. We compared Xgboost with benchmark classifiers such as random forest (RF) and support vector machines (SVMs). The methods are applied to VHR imagery of two sub-Saharan cities of Dakar and Ouagadougou and the village of Vaihingen, Germany. The results demonstrate that Xgboost parameterized with a Bayesian procedure, systematically outperformed RF and SVM, mainly in larger sample sizes.

langue originaleAnglais
Pages (de - à)607-611
Nombre de pages5
journalIEEE Geoscience and Remote Sensing Letters
Volume15
Numéro de publication4
Les DOIs
étatPublié - avr. 2018

Empreinte digitale

Examiner les sujets de recherche de « Very High Resolution Object-Based Land Use-Land Cover Urban Classification Using Extreme Gradient Boosting ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation