Underwater threat recognition: Are automatic target classification algorithms going to replace expert human operators in the near future?

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

In this paper, different human/machine strategies are tested in order to evaluate their performance in underwater threat recognition. Sonar images collected using synthetic aperture sonar (SAS) and side scan sonar (SSS) during real mine countermeasures exercises are used. Data are collected over a test area on the Belgian Continental Shelf, where several targets were deployed. Image resolution is divided in three categories: (1) up to 5cm pixel size, (2) between 5cm and 10cm pixel size, (3) larger than 10cm pixel size. Soil complexity is also evaluated and used to build up different strategies. Results demonstrate the utility of considering the human operator as an integral part of the automatic underwater object recognition process, as well as how automated algorithms can extend and complement human performances.

langue originaleAnglais
titreOCEANS 2019 - Marseille, OCEANS Marseille 2019
EditeurInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronique)9781728114507
Les DOIs
étatPublié - juin 2019
Evénement2019 OCEANS - Marseille, OCEANS Marseille 2019 - Marseille, France
Durée: 17 juin 201920 juin 2019

Série de publications

NomOCEANS 2019 - Marseille, OCEANS Marseille 2019
Volume2019-June

Une conférence

Une conférence2019 OCEANS - Marseille, OCEANS Marseille 2019
Pays/TerritoireFrance
La villeMarseille
période17/06/1920/06/19

Empreinte digitale

Examiner les sujets de recherche de « Underwater threat recognition: Are automatic target classification algorithms going to replace expert human operators in the near future? ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation