UNCOVER: Development of an efficient steganalysis framework for uncovering hidden data in digital media

Vaila Leask, Rémi Cogranne, Dirk Borghys, Helena Bruyninckx

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

This paper presents the general goals of Horizon 2020 project UNCOVER, whose overall purpose is to close the gap between academic work and operational needs in the fields of data-hiding. While digital data-hiding is a relatively new area of research, our motivation in this project has been rooted in the growing gap between the academic community and the operational needs of a "real-life"scenario of object inspection in order to UNCOVER the presence of data secretly hidden. As well as an oversight into the structure of UNCOVER, our paper presents an empirical study on the impact of specifically training a detection method for a given data-hiding scheme, the so-called Stego-Source Mismatch, as an example of unexplored issues that raises important and mostly ignored consequences within the operational context the UNCOVER project targets.

langue originaleAnglais
titreProceedings of the 17th International Conference on Availability, Reliability and Security, ARES 2022
EditeurAssociation for Computing Machinery
ISBN (Electronique)9781450396707
Les DOIs
étatPublié - 23 août 2022
Evénement17th International Conference on Availability, Reliability and Security, ARES 2022 - Vienna, Autriche
Durée: 23 août 202226 août 2022

Série de publications

NomACM International Conference Proceeding Series

Une conférence

Une conférence17th International Conference on Availability, Reliability and Security, ARES 2022
Pays/TerritoireAutriche
La villeVienna
période23/08/2226/08/22

Empreinte digitale

Examiner les sujets de recherche de « UNCOVER: Development of an efficient steganalysis framework for uncovering hidden data in digital media ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation