Study of the influence of pre-processing on local statistics-based anomaly detector results

Dirk Borghys, Christiaan Perneel

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

Anomaly detection in hyperspectral data has received much attention for various applications and is especially important for defense and security applications. Anomaly detection detects pixels in the hyperspectral data cube whose spectra differ significantly from the background spectra [1]. Most existing methods estimate the spectra of the (local or global) background and then detect anomalies as pixels with a large spectral distance w.r.t. the determined background spectra. Many types of anomaly detectors have been proposed in literature. This paper reports on a sensitivity study that tries to determine an adequate pre-processing chain for anomaly detection in hyperspectral scenes. The study is performed on a set of five hyperspectral datasets and focuses on statisticsbased anomaly detectors.

langue originaleAnglais
titre2nd Workshop on Hyperspectral Image and Signal Processing
Sous-titreEvolution in Remote Sensing, WHISPERS 2010 - Workshop Program
Les DOIs
étatPublié - 2010
Evénement2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2010 - Reykjavik, Islande
Durée: 14 juin 201016 juin 2010

Série de publications

Nom2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2010 - Workshop Program

Une conférence

Une conférence2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2010
Pays/TerritoireIslande
La villeReykjavik
période14/06/1016/06/10

Empreinte digitale

Examiner les sujets de recherche de « Study of the influence of pre-processing on local statistics-based anomaly detector results ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation