Spectrum Prediction for Protocol-Aware RF Jamming

Sanjoy Basak, Sreeraj Rajendran, Sofie Pollin, Bart Scheers

Résultats de recherche: Contribution à un journalArticleRevue par des pairs

Résumé

Neutralizing a drone using a protocol-aware RF jammer requires precise knowledge of the occupied spectrum in the time and frequency domains. This paper aims to develop an automatic spectrum prediction framework utilizing the Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) models. We generate a synthetic dataset using the commonly used drone signal properties and parameters, and evaluate the prediction performance under several realistic scenarios. Our experiment shows that the CNN-LSTM model can accurately predict future time and frequency sequences by using the spectrogram matrix as the input. We obtained better prediction performance with lower computational costs with our framework compared to the existing frameworks. Furthermore, we show that the CNN-LSTM model can predict future time-frequency sequences of unseen hopping rates and patterns when using transfer learning. The performance validation is also performed using real drone RF signals. Furthermore, we present a two-stage spectrum prediction approach that achieves excellent performance by offering higher frequency resolutions while maintaining a lower computational cost.

langue originaleAnglais
Pages (de - à)363-373
Nombre de pages11
journalIEEE Transactions on Cognitive Communications and Networking
Volume10
Numéro de publication2
Les DOIs
étatPublié - 1 avr. 2024

Empreinte digitale

Examiner les sujets de recherche de « Spectrum Prediction for Protocol-Aware RF Jamming ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation