Pedestrian tracking in the compressed domain using thermal images

Ichraf Lahouli, Robby Haelterman, Zied Chtourou, Geert De Cubber, Rabah Attia

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

The video surveillance of sensitive facilities or borders poses many challenges like the high bandwidth requirements and the high computational cost. In this paper, we propose a framework for detecting and tracking pedestrians in the compressed domain using thermal images. Firstly, the detection process uses a conjunction between saliency maps and contrast enhancement techniques followed by a global image content descriptor based on Discrete Chebychev Moments (DCM) and a linear Support Vector Machine (SVM) as a classifier. Secondly, the tracking process exploits raw H.264 compressed video streams with limited computational overhead. In addition to two, well-known, public datasets, we have generated our own dataset by carrying six different scenarios of suspicious events using a thermal camera. The obtained results show the effectiveness and the low computational requirements of the proposed framework which make it suitable for real-time applications and onboard implementation.

langue originaleAnglais
titreRepresentations, Analysis and Recognition of Shape and Motion from Imaging Data - 7th International Workshop, RFMI 2017, Revised Selected Papers
rédacteurs en chefLiming Chen, Faouzi Ghorbel, Boulbaba Ben Amor
EditeurSpringer
Pages35-44
Nombre de pages10
ISBN (imprimé)9783030198152
Les DOIs
étatPublié - 2019
Evénement7th International Workshop on Representations, Analysis and Recognition of Shape and Motion from Imaging Data, RFMI 2017 - Savoie, France
Durée: 17 déc. 201720 déc. 2017

Série de publications

NomCommunications in Computer and Information Science
Volume842
ISSN (imprimé)1865-0929
ISSN (Electronique)1865-0937

Une conférence

Une conférence7th International Workshop on Representations, Analysis and Recognition of Shape and Motion from Imaging Data, RFMI 2017
Pays/TerritoireFrance
La villeSavoie
période17/12/1720/12/17

Empreinte digitale

Examiner les sujets de recherche de « Pedestrian tracking in the compressed domain using thermal images ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation