Pedestrian detection and trajectory estimation in the compressed domain using thermal images

Ichraf Lahouli, Zied Chtourou, Mohamed Ali Ben Ayed, Robby Haelterman, Geert De Cubber, Rabah Attia

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

Since a few decades, the Unmanned Aerial Vehicles (UAVs) are considered precious tools for different military applications such as the automatic surveillance in outdoor environments. Nevertheless, the onboard implementation of image and video processing techniques poses many challenges like the high computational cost and the high bandwidth requirements, especially on low-performance processing platforms like small or medium UAVs. A fast and efficient framework for pedestrian detection and trajectory estimation for outdoor surveillance using thermal images is presented in this paper. First, the detection process is based on a conjunction between contrast enhancement techniques and saliency maps as a hotspot detector, on Discrete Chebychev Moments (DCM) as a global image content descriptor and on a linear Support Vector Machine (SVM) as a classifier. Second, raw H.264/AVC compressed video streams with limited computational overhead are exploited to estimate the trajectories of the detected pedestrians. In order to simulate suspicious events, six different scenarios were carried out and filmed using a thermal camera. The obtained results show the effectiveness and the low computational requirements of the proposed framework which make it suitable for real-time applications and onboard implementation.

langue originaleAnglais
titreComputer Vision, Imaging and Computer Graphics Theory and Applications - 13th International Joint Conference, VISIGRAPP 2018, Revised Selected Papers
rédacteurs en chefDominique Bechmann, Manuela Chessa, Ana Paula Cláudio, Francisco Imai, Andreas Kerren, Paul Richard, Alexandru Telea, Alain Tremeau
EditeurSpringer
Pages212-227
Nombre de pages16
ISBN (imprimé)9783030267551
Les DOIs
étatPublié - 2019
Evénement13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2018 - Funchal, Madeira, Portugal
Durée: 27 janv. 201829 janv. 2018

Série de publications

NomCommunications in Computer and Information Science
Volume997
ISSN (imprimé)1865-0929
ISSN (Electronique)1865-0937

Une conférence

Une conférence13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2018
Pays/TerritoirePortugal
La villeFunchal, Madeira
période27/01/1829/01/18

Empreinte digitale

Examiner les sujets de recherche de « Pedestrian detection and trajectory estimation in the compressed domain using thermal images ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation