Optimal Survey Path for MCM Operations using Variable Length Genetic Algorithms

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

We are interested in the optimal survey path that an autonomous underwater vehicle (AUV) should follow during the detection phase of mine countermeasures (MCM) operations. In our study, we suppose that the sea bottom survey is made by collecting high resolution images generated by a side looking sonar. We suppose the seabed map is available a priori. Our purpose is to minimize the travelled length under coverage constraint. The optimal coverage path is computed by means of a variable length genetic algorithm. Classical lawnmower pattern with horizontal tracks as well as grid pattern with both horizontal and vertical tracks are considered. The latter pattern is performed in series (in parallel) with one drone (two drones) respectively. It is shown that the use of a second drone for perpendicular tracks leads to significant reductions in mission execution times which are mandatory for swift clearing of mine like objects.

langue originaleAnglais
titre20th International Industrial Simulation Conference, ISC 2022
rédacteurs en chefEleni Mangina
EditeurEUROSIS
Pages16-20
Nombre de pages5
ISBN (Electronique)9789492859211
étatPublié - 2022
Evénement20th International Industrial Simulation Conference, ISC 2022 - Dublin, Irlande
Durée: 1 juin 20223 juin 2022

Série de publications

Nom20th International Industrial Simulation Conference, ISC 2022

Une conférence

Une conférence20th International Industrial Simulation Conference, ISC 2022
Pays/TerritoireIrlande
La villeDublin
période1/06/223/06/22

Empreinte digitale

Examiner les sujets de recherche de « Optimal Survey Path for MCM Operations using Variable Length Genetic Algorithms ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation