Multivariate texture discrimination using a principal geodesic classifier

A. Shabbir, G. Verdoolaege

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

A new texture discrimination method is presented for classification and retrieval of colored textures represented in the wavelet domain. The interband correlation structure is modeled by multivariate probability models which constitute a Riemannian manifold. The presented method considers the shape of the class on the manifold by determining the principal geodesic of each class. The method, which we call principal geodesic classification, then determines the shortest distance from a test texture to the principal geodesic of each class. We use the Rao geodesic distance (GD) for calculating distances on the manifold. We compare the performance of the proposed method with distance-to-centroid and k-nearest neighbor classifiers and of the GD with the Euclidean distance. The principal geodesic classifier coupled with the GD yields better results, indicating the usefulness of effectively and concisely quantifying the variability of the classes in the probabilistic feature space.

langue originaleAnglais
titre2015 IEEE International Conference on Image Processing, ICIP 2015 - Proceedings
EditeurInstitute of Electrical and Electronics Engineers Inc.
Pages3550-3554
Nombre de pages5
ISBN (Electronique)9781479983391
Les DOIs
étatPublié - 9 déc. 2015
EvénementIEEE International Conference on Image Processing, ICIP 2015 - Quebec City, Canada
Durée: 27 sept. 201530 sept. 2015

Série de publications

NomProceedings - International Conference on Image Processing, ICIP
Volume2015-December
ISSN (imprimé)1522-4880

Une conférence

Une conférenceIEEE International Conference on Image Processing, ICIP 2015
Pays/TerritoireCanada
La villeQuebec City
période27/09/1530/09/15

Empreinte digitale

Examiner les sujets de recherche de « Multivariate texture discrimination using a principal geodesic classifier ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation