Résumé
At present, magnetic confinement fusion devices rely solely on absolute neutron counting as a direct way of measuring fusion power. Absolute counting of deuterium-tritium gamma rays could provide the secondary neutron-independent technique required for the validation of scientific results and as a licensing tool for future power plants. However, this approach necessitates an accurate determination of the gamma-ray-to-neutron branching ratio. The gamma-ray-to-neutron branching ratio for the deuterium-tritium reaction H3(H2,γ)He5/H3(H2,n)He4 was determined in magnetic confinement fusion plasmas at the Joint European Torus in predominantly deuterium beam heated plasmas. The branching ratio was found to be equal to (2.4±0.5)×10-5 over the deuterium energy range of (80±20) keV. This accurate determination of the deuterium-tritium branching ratio paves the way for a direct and neutron-independent measurement of fusion power in magnetic confinement fusion reactors, based on the absolute counting of deuterium-tritium gamma rays.
langue originale | Anglais |
---|---|
Numéro d'article | 055102 |
journal | Physical Review Letters |
Volume | 133 |
Numéro de publication | 5 |
Les DOIs | |
état | Publié - 2 août 2024 |