Human-in-the-loop for autonomous underwater threat recognition

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

In this paper, human expert operators and automated classification algorithms are charged with the task of analyzing sonar images collected during real mine countermeasures exercises in order to detect and classify targets. Images are collected using synthetic aperture sonar (SAS) and side scan sonar (SSS), covering a test area on the Belgian Continental Shelf, between the Thorton bank and the Goote Bank. A seafloor segmentation map of this area, calculated using lacunarity and representing how difficult or how benign the seafloor is for object-recognition, is used as a new strategy in order to divide the database between operator and computer. Results demonstrate the utility of considering the human operator as an integral part of the automatic underwater object recognition process, and demonstrate how automated algorithms can extend and complement human performances.

langue originaleAnglais
titreOCEANS 2018 MTS/IEEE Charleston, OCEAN 2018
EditeurInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronique)9781538648148
Les DOIs
étatPublié - 7 janv. 2019
EvénementOCEANS 2018 MTS/IEEE Charleston, OCEANS 2018 - Charleston, États-Unis
Durée: 22 oct. 201825 oct. 2018

Série de publications

NomOCEANS 2018 MTS/IEEE Charleston, OCEAN 2018

Une conférence

Une conférenceOCEANS 2018 MTS/IEEE Charleston, OCEANS 2018
Pays/TerritoireÉtats-Unis
La villeCharleston
période22/10/1825/10/18

Empreinte digitale

Examiner les sujets de recherche de « Human-in-the-loop for autonomous underwater threat recognition ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation