Fusion scheme for automatic and large-scaled built-up mapping

Yann Forget, Michal Shimoni, Juanfran Lopez, Catherine Linard, Marius Gilbert

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

As more and more geospatial data are produced, Big Earth data is becoming a new key to the understanding of the Earth. Such opportunity also comes with new issues and challenges related to the massive and heteregenous amount of data to process and to analyse. The present work explores the use of three types of Earth Observation (EO) data in order to automatically classify built and non-built areas in Africa using a machine learning classifier: SAR (Sentinel) and optical (Landsat) imagery, and the OpenStreetMap (OSM) database as training data. Experimental results in ten african cities show that the use of satellite data from multiple sensors improves the performance of the classifiers in these areas. They also show that using crowd-sourced geospatial databases such as OSM as training data leads to similar accuracies than when relying on field surveys or hand-digitalized datasets.

langue originaleAnglais
titre2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings
EditeurInstitute of Electrical and Electronics Engineers Inc.
Pages2072-2075
Nombre de pages4
ISBN (Electronique)9781538671504
Les DOIs
étatPublié - 31 oct. 2018
Evénement38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Valencia, Espagne
Durée: 22 juil. 201827 juil. 2018

Série de publications

NomInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2018-July

Une conférence

Une conférence38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018
Pays/TerritoireEspagne
La villeValencia
période22/07/1827/07/18

Empreinte digitale

Examiner les sujets de recherche de « Fusion scheme for automatic and large-scaled built-up mapping ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation