Estimation of the bullet depth of penetration based on the numerical integration of stochastic differential equation

Beya Tahenti, Frederik Coghe, Rachid Nasri, Ben Lauwens

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

The ballistic performance of materials subjected to projectile impact loading is analyzed based on the determination of the ballistic limit velocity (BLV) or the depth of penetration (DoP). The ballistic assessment of thick plates is generally based on the use of the DoP parameter. Experimental observation reveals the randomness of the DoP of a given projectile penetrating the target material at a given impact velocity. This contribution models the projectile DoP using the Brownian motion approach. The key advantage of the developed model is that it supplies insights about the statistical distribution of the DoP instead of only providing an analytical estimation of this parameter. Furthermore, if perforation starts to occur, this approach might also yield information about the residual velocity and its dispersion. Finally, the model results are compared with the ones produced by the most existing methods.

langue originaleAnglais
titreProceedings - 30th International Symposium on Ballistics, BALLISTICS 2017
rédacteurs en chefSidney Chocron, James D. Walker
EditeurDEStech Publications Inc.
Pages2330-2341
Nombre de pages12
ISBN (Electronique)9781605954196
Les DOIs
étatPublié - 2017
Evénement30th International Symposium on Ballistics, BALLISTICS 2017 - Long Beach, États-Unis
Durée: 11 sept. 201715 sept. 2017

Série de publications

NomProceedings - 30th International Symposium on Ballistics, BALLISTICS 2017
Volume2

Une conférence

Une conférence30th International Symposium on Ballistics, BALLISTICS 2017
Pays/TerritoireÉtats-Unis
La villeLong Beach
période11/09/1715/09/17

Empreinte digitale

Examiner les sujets de recherche de « Estimation of the bullet depth of penetration based on the numerical integration of stochastic differential equation ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation