TY - JOUR
T1 - Endurance exercise-induced and mental fatigue and the brain
AU - Meeusen, Romain
AU - Van Cutsem, Jeroen
AU - Roelands, Bart
N1 - Publisher Copyright:
© 2020 The Authors. Experimental Physiology © 2020 The Physiological Society.
PY - 2021/12/1
Y1 - 2021/12/1
N2 - New Findings: What is the topic of this review? It provides an overview of the recent papers linking brain neurotransmission with exercise-induced and/or mental fatigue. What advances does it highlight? The noradrenergic neurotransmitter system hastens central fatigue during prolonged exercise, a finding that coincides with a faster rate of increase in the rating of perceived exertion. 2) Mental fatigue affects several neurotransmitter systems, with presumably an important role for dopamine and adenosine, in multiple brain regions such as the prefrontal cortex and the anterior cingulate cortex. Abstract: In sports and exercise science, fatigue is an elusive concept that has important implications in performance during exercise. It has been described in many ways (tiredness, exhaustion, lethargy or weariness) and describes a physical and/or mental state of being tired and lack of energy. Exercise-induced fatigue can be defined as an acute impairment of exercise performance, and a distinction has been made between peripheral and central fatigue. Mental fatigue can be defined as a psychobiological state caused by prolonged exertion that has the potential to reduce cognitive performance and exercise performance. Recent studies have given clear indications that brain catecholamines are involved in the onset of fatigue during endurance exercise. Evidence is provided indicating that the noradrenergic neurotransmitter system hastens central fatigue, a finding that coincides with a faster rate of increase in the rating of perceived exertion. Brain neurotransmission is also suggested to play an important role in mental fatigue. Several neurotransmitter systems might be implicated (with the most important role for dopamine and adenosine) in multiple brain regions, such as the prefrontal cortex and the anterior cingulate cortex, and the summation of these alterations might explain the impairment in endurance performance in a mentally fatigued state. Obviously, we have to keep in mind that fatigue is a very complex construct and that, besides brain neurochemistry, several other factors play a role in its onset.
AB - New Findings: What is the topic of this review? It provides an overview of the recent papers linking brain neurotransmission with exercise-induced and/or mental fatigue. What advances does it highlight? The noradrenergic neurotransmitter system hastens central fatigue during prolonged exercise, a finding that coincides with a faster rate of increase in the rating of perceived exertion. 2) Mental fatigue affects several neurotransmitter systems, with presumably an important role for dopamine and adenosine, in multiple brain regions such as the prefrontal cortex and the anterior cingulate cortex. Abstract: In sports and exercise science, fatigue is an elusive concept that has important implications in performance during exercise. It has been described in many ways (tiredness, exhaustion, lethargy or weariness) and describes a physical and/or mental state of being tired and lack of energy. Exercise-induced fatigue can be defined as an acute impairment of exercise performance, and a distinction has been made between peripheral and central fatigue. Mental fatigue can be defined as a psychobiological state caused by prolonged exertion that has the potential to reduce cognitive performance and exercise performance. Recent studies have given clear indications that brain catecholamines are involved in the onset of fatigue during endurance exercise. Evidence is provided indicating that the noradrenergic neurotransmitter system hastens central fatigue, a finding that coincides with a faster rate of increase in the rating of perceived exertion. Brain neurotransmission is also suggested to play an important role in mental fatigue. Several neurotransmitter systems might be implicated (with the most important role for dopamine and adenosine) in multiple brain regions, such as the prefrontal cortex and the anterior cingulate cortex, and the summation of these alterations might explain the impairment in endurance performance in a mentally fatigued state. Obviously, we have to keep in mind that fatigue is a very complex construct and that, besides brain neurochemistry, several other factors play a role in its onset.
KW - brain
KW - fatigue
KW - performance
UR - http://www.scopus.com/inward/record.url?scp=85083634623&partnerID=8YFLogxK
U2 - 10.1113/EP088186
DO - 10.1113/EP088186
M3 - Article
C2 - 32176398
AN - SCOPUS:85083634623
SN - 0958-0670
VL - 106
SP - 2294
EP - 2298
JO - Experimental Physiology
JF - Experimental Physiology
IS - 12
ER -