Detect & Reject for Transferability of Black-Box Adversarial Attacks Against Network Intrusion Detection Systems

Islam Debicha, Thibault Debatty, Jean-Michel Dricot, Wim Mees, Tayeb Kenaza

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

In the last decade, the use of Machine Learning techniques in anomaly-based intrusion detection systems has seen much success. However, recent studies have shown that Machine learning in general and deep learning specifically are vulnerable to adversarial attacks where the attacker attempts to fool models by supplying deceptive input. Research in computer vision, where this vulnerability was first discovered, has shown that adversarial images designed to fool a specific model can deceive other machine learning models. In this paper, we investigate the transferability of adversarial network traffic against multiple machine learning-based intrusion detection systems. Furthermore, we analyze the robustness of the ensemble intrusion detection system, which is notorious for its better accuracy compared to a single model, against the transferability of adversarial attacks. Finally, we examine Detect & Reject as a defensive mechanism to limit the effect of the transferability property of adversarial network traffic against machine learning-based intrusion detection systems.

langue originaleAnglais
titreAdvances in Cyber Security - 3rd International Conference, ACeS 2021, Revised Selected Papers
rédacteurs en chefNibras Abdullah, Selvakumar Manickam, Mohammed Anbar
EditeurSpringer Science and Business Media Deutschland GmbH
Pages329-339
Nombre de pages11
ISBN (imprimé)9789811680588
Les DOIs
étatPublié - 2021
Evénement3rd International Conference on Advances in Cyber Security, ACeS 2021 - Virtual Online
Durée: 24 août 202125 août 2021

Série de publications

NomCommunications in Computer and Information Science
Volume1487 CCIS
ISSN (imprimé)1865-0929
ISSN (Electronique)1865-0937

Une conférence

Une conférence3rd International Conference on Advances in Cyber Security, ACeS 2021
La villeVirtual Online
période24/08/2125/08/21

Empreinte digitale

Examiner les sujets de recherche de « Detect & Reject for Transferability of Black-Box Adversarial Attacks Against Network Intrusion Detection Systems ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation