Depth-Visual-Inertial (DVI) Mapping System for Robust Indoor 3D Reconstruction

Charles Hamesse, Michiel Vlaminck, Hiep Luong, Rob Haelterman

Résultats de recherche: Contribution à un journalArticleRevue par des pairs

Résumé

We propose the Depth-Visual-Inertial (DVI) mapping system: a robust multi-sensor fusion framework for dense 3D mapping using time-of-flight cameras equipped with RGB and IMU sensors. Inspired by recent developments in real-time LiDAR-based odometry and mapping, our system uses an error-state iterative Kalman filter for state estimation: it processes the inertial sensor's data for state propagation, followed by a state update first using visual-inertial odometry, then depth-based odometry. This sensor fusion scheme makes our system robust to degenerate scenarios (e.g. lack of visual or geometrical features, fast rotations) and to noisy sensor data, like those that can be obtained with off-the-shelf time-of-flight DVI sensors. For evaluation, we propose the new Bunker DVI Dataset, featuring data from multiple DVI sensors recorded in challenging conditions reflecting search-and-rescue operations. We show the superior robustness and precision of our method against previous work. Following the open science principle, we make both our source code and dataset publicly available.

langue originaleAnglais
Pages (de - à)11313-11320
Nombre de pages8
journalIEEE Robotics and Automation Letters
Volume9
Numéro de publication12
Les DOIs
étatPublié - 2024

Empreinte digitale

Examiner les sujets de recherche de « Depth-Visual-Inertial (DVI) Mapping System for Robust Indoor 3D Reconstruction ». Ensemble, ils forment une empreinte digitale unique.
  • Future Land Forces 2024

    Hamesse, C. (Participant)

    6 nov. 2024

    Activité: Participation ou organisation d'un événement (conférence, campagne de mesure)Participer à une conférence, à un atelier,...

Contient cette citation