Projets par an
Résumé
Seabed characterisation consists in the study of the physical and biological properties of the bottom of the oceans. It is effectively achieved with sonar, a remote sensing method that captures acoustic backscatter of the seabed. Classical Machine Learning (ML) and Deep Learning (DL) research have failed to successfully address the automatic mapping of the seabed from noisy sonar data. This work introduces the Deep Supervised Semantic Segmentation model for Seabed Characterisation (D4SC), a novel U-Net-like model tailored to such data and low-label regime, and proposes a new end-to-end processing pipeline for seabed semantic segmentation. That dual contribution achieves state-of-the-art results on a high resolution Synthetic Aperture Sonar (SAS) survey dataset.
langue originale | Anglais |
---|---|
titre | IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings |
Editeur | Institute of Electrical and Electronics Engineers Inc. |
Pages | 6932-6935 |
Nombre de pages | 4 |
ISBN (Electronique) | 9798350320107 |
Les DOIs | |
état | Publié - 2023 |
Evénement | 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, États-Unis Durée: 16 juil. 2023 → 21 juil. 2023 https://2023.ieeeigarss.org/ |
Série de publications
Nom | International Geoscience and Remote Sensing Symposium (IGARSS) |
---|---|
Volume | 2023-July |
Une conférence
Une conférence | 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 |
---|---|
Titre abrégé | IGARSS 2023 |
Pays/Territoire | États-Unis |
La ville | Pasadena |
période | 16/07/23 → 21/07/23 |
Adresse Internet |
Empreinte digitale
Examiner les sujets de recherche de « D4SC: Deep Supervised Semantic Segmentation for Seabed Characterisation in Low-Label Regime ». Ensemble, ils forment une empreinte digitale unique.Projets
- 1 Actif
-
DAP/21-11: Automatic, small-scale sea-floor characterization from high-resolution sonar data
Lopera Tellez, O. (Promoteur), Neyt, X. (Promoteur) & Arhant, Y. (Chercheur)
1/09/21 → 31/08/25
Projet: Recherche