Comparison of algorithms for the classification of polarimetric SAR data

V. Alberga, D. Borghys, G. Satalino, D. K. Staykova, A. Borghgraef, F. Lapierre, C. Perneel

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

Most of the current SAR systems aquire fully polarimetric data where the obtained scattering information can be represented by various coherent and incoherent parameters. in previous contributions we reviewed these parameters in terms of their "utility" for landcover classification, here, we investigate their impact on several classification algoritms. Three classifiers: the minimum-distance classifier, a multi-layer perceptron (MLP) and one based on logistic regression (LR) were applied on an L-Band scene acquired by the E-SAR sensor. MLP and LR were chosen because they are robust w.r.t. the data statistics. An interesting result is that MLP gives better results on the coherent parameters while LR gives better results on the incoherent parameters.

langue originaleAnglais
titreImage and Signal Processing for Remote Sensing XV
Les DOIs
étatPublié - 2009
EvénementImage and Signal Processing for Remote Sensing XV - Berlin, Allemagne
Durée: 31 août 20093 sept. 2009

Série de publications

NomProceedings of SPIE - The International Society for Optical Engineering
Volume7477
ISSN (imprimé)0277-786X

Une conférence

Une conférenceImage and Signal Processing for Remote Sensing XV
Pays/TerritoireAllemagne
La villeBerlin
période31/08/093/09/09

Empreinte digitale

Examiner les sujets de recherche de « Comparison of algorithms for the classification of polarimetric SAR data ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation