Comparative Analysis of Deep Learning Methods for Unmanned Aerial Vehicles (UAVs) Recognition and Identification Using Micro-Doppler Signatures

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

27 Téléchargements (Pure)

Résumé

In this work, we introduce a novel methodology for small Unmanned Aerial Vehicles (UAVs) classification by leveraging their specific micro-Doppler signatures (mDs). The proposed approach involves the direct application of Recurrent Neural Network (RNN) techniques to temporal radar signals. Hence, we have constructed neural network architectures incorporating Gated Recurrent Unit (GRU) layers, achieving classification accuracies of 100%. To comprehensively evaluate our methodology, we compare our findings with two alternative approaches for UAVs classification: one utilizing Convolutional Neural Networks (CNN)-based networks where mDs are represented as spectrograms transformed into images, and another employing RNN-based methods applied to spectrograms of the mDs.
langue originaleAnglais
titreProceedings of the International Radar Conference 2024
Nombre de pages6
étatPublié - 2024

Empreinte digitale

Examiner les sujets de recherche de « Comparative Analysis of Deep Learning Methods for Unmanned Aerial Vehicles (UAVs) Recognition and Identification Using Micro-Doppler Signatures ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation