Combining wavelets and mathematical morphology to detect changes in time series

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

In this paper, the problem of detecting changes in time series is addressed. First, the time series is decomposed at multiple scales into wavelet coefficients, in order to obtain a preliminary map of the discontinuities/change points. To select only the relevant ones, we here propose a filtering step based on mathematical morphology. To the best of our knowledge, this is the first time that morphological filters are used in combination with the wavelet transform to address the change point detection problem. The methodology has been validated by analyzing a large set of simulated time series featuring a variable number of change points. For a more comprehensive analysis of the performance, different levels of noise have been also added to the original simulated data.

langue originaleAnglais
titre2017 Progress In Electromagnetics Research Symposium - Fall, PIERS - FALL 2017 - Proceedings
EditeurElectromagnetics Academy
Pages1015-1020
Nombre de pages6
ISBN (Electronique)9781538612118
Les DOIs
étatPublié - 2017
Evénement2017 Progress In Electromagnetics Research Symposium - Fall, PIERS - FALL 2017 - Singapore, Singapour
Durée: 19 nov. 201722 nov. 2017

Série de publications

NomProgress in Electromagnetics Research Symposium
Volume2017-November
ISSN (imprimé)1559-9450
ISSN (Electronique)1931-7360

Une conférence

Une conférence2017 Progress In Electromagnetics Research Symposium - Fall, PIERS - FALL 2017
Pays/TerritoireSingapour
La villeSingapore
période19/11/1722/11/17

Empreinte digitale

Examiner les sujets de recherche de « Combining wavelets and mathematical morphology to detect changes in time series ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation