CNN-based object detection and segmentation for maritime domain awareness

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

Deep learning algorithms have been proven to be a powerful tool in image and video processing for security and surveillance operations. In a maritime environment, the fusion of electro-optical sensor data with human intelligence plays an important role to counter the security issues. For instance, the situational awareness can be enhanced through an automated system that generates reports on ship identity and signature together with detecting the changes on naval vessels activity. To date, various studies have been set out to explore the performance of deep neural networks using a ship signature database. In the current study, we investigate the Mask R-CNN method to address not only the naval vessel detection using bounding boxes, but also obtaining their segmentation masks. We train and validate the model on data captured by an on-board camera covering the visible spectral band under various weather and light conditions. The experimental results show that Mask RCNN provides high confidence scores on challenging scenarios with a mean average precision of 86.4%. However, the precision of the segmentation mask is slightly deteriorated when the ships are adjacent to the border of the captured scene. Moreover, the network tested on thermal images indicates a decrease in detection and segmentation performance since the training data distribution is not representative enough.

langue originaleAnglais
titreArtificial Intelligence and Machine Learning in Defense Applications II
rédacteurs en chefJudith Dijk
EditeurSociety of Photo-Optical Instrumentation Engineers
ISBN (Electronique)9781510638990
Les DOIs
étatPublié - 2020
EvénementArtificial Intelligence and Machine Learning in Defense Applications II 2020 - Virtual, Online, Royaume-Uni
Durée: 21 sept. 202025 sept. 2020

Série de publications

NomProceedings of SPIE - The International Society for Optical Engineering
Volume11543
ISSN (imprimé)0277-786X
ISSN (Electronique)1996-756X

Une conférence

Une conférenceArtificial Intelligence and Machine Learning in Defense Applications II 2020
Pays/TerritoireRoyaume-Uni
La villeVirtual, Online
période21/09/2025/09/20

Empreinte digitale

Examiner les sujets de recherche de « CNN-based object detection and segmentation for maritime domain awareness ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation