Building k-NN graphs from large text data

Thibault Debatty, Pietro Michiardi, Olivier Thonnard, Wim Mees

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

In this paper we present our new design of NNCTPH, a scalable algorithm to build an approximate k-NN graph from large text datasets. The algorithm uses a modified version of Context Triggered Piecewise Hashing to bin the input data into buckets, and uses NN-Descent, a versatile graph-building algorithm, inside each bucket. We use datasets consisting of the subject of spam emails to experimentally test the influence of the different parameters of the algorithm on the number of computed similarities, on processing time, and on the quality of the final graph. We also compare the algorithm with a sequential and a MapReduce implementation of NN-Descent. For our datasets, the algorithm proved to be up to ten times faster than NN-Descent, for the same quality of produced graph. Moreover, the speedup increased with the size of the dataset, making NNCTPH a sensible choice for very large text datasets.

langue originaleAnglais
titreProceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014
rédacteurs en chefJimmy Lin, Jian Pei, Xiaohua Tony Hu, Wo Chang, Raghunath Nambiar, Charu Aggarwal, Nick Cercone, Vasant Honavar, Jun Huan, Bamshad Mobasher, Saumyadipta Pyne
EditeurInstitute of Electrical and Electronics Engineers Inc.
Pages573-578
Nombre de pages6
ISBN (Electronique)9781479956654
Les DOIs
étatPublié - 2014
Evénement2nd IEEE International Conference on Big Data, IEEE Big Data 2014 - Washington, États-Unis
Durée: 27 oct. 201430 oct. 2014

Série de publications

NomProceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014

Une conférence

Une conférence2nd IEEE International Conference on Big Data, IEEE Big Data 2014
Pays/TerritoireÉtats-Unis
La villeWashington
période27/10/1430/10/14

Empreinte digitale

Examiner les sujets de recherche de « Building k-NN graphs from large text data ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation