Automatic generation of statistical shape models in motion

Sofia Scataglini, Robby Haelterman, Damien Van Tiggelen

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

Statistical body shape modeling (SBSM) is a well-known technique to map out the variability of body shapes and is commonly used in 3D anthropometric analyses. In this paper, a new approach to integrate movement acquired by a motion capture system with a body shape is proposed. This was done by selecting landmarks on a body shape model, and predicting a body shape based on features. Then, a virtual skeleton was generated relative to those landmarks. This skeleton was parented to a body shape, allowing to modify its pose and to add pre-recorded motion to different body shapes in a realistic way.

langue originaleAnglais
titreAdvances in Human Factors in Simulation and Modeling - Proceedings of the AHFE 2018 International Conferences on Human Factors and Simulation and Digital Human Modeling and Applied Optimization
rédacteurs en chefDaniel N. Cassenti
EditeurSpringer
Pages170-178
Nombre de pages9
ISBN (imprimé)9783319942223
Les DOIs
étatPublié - 2019
EvénementAHFE International Conferences on Human Factors and Simulation and Digital Human Modeling and Applied Optimization, 2018 - Orlando, États-Unis
Durée: 21 juil. 201825 juil. 2018

Série de publications

NomAdvances in Intelligent Systems and Computing
Volume780
ISSN (imprimé)2194-5357

Une conférence

Une conférenceAHFE International Conferences on Human Factors and Simulation and Digital Human Modeling and Applied Optimization, 2018
Pays/TerritoireÉtats-Unis
La villeOrlando
période21/07/1825/07/18

Empreinte digitale

Examiner les sujets de recherche de « Automatic generation of statistical shape models in motion ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation