Armor's ballistic resistance simulation using stochastic process modeling

Beya Tahenti, Frederik Coghe, Rachid Nasri, Marc Pirlot

Résultats de recherche: Contribution à un journalArticleRevue par des pairs

Résumé

For many years, ballistic performance evaluation of protection structures makes use of the estimation of the ballistic limit velocity V50, the projectile impact velocity at which there is a 50 percent probability of perforation of the assessed structure. In recent years, enhancements to risk assessment required the estimation of the entire curve of the probability of perforation. Extreme values of complete perforation (partial penetration) at low (high) impact velocity are rare events of the studied system with binary response experiments. Existing methods have comparable accuracy in estimating the V50 velocity, and use the normality assumption to estimate any percentile of interest Vx. This contribution proposes to model the projectile evolution into the target as a diffusion process using the Brownian motion process. A Chi-square and Kolmogorov–Smirnov goodness of fit test is applied to estimate the drift and diffusion coefficients of the developed stochastic differential equation based on the Monte Carlo simulated sample and the experimental one. Under the assumption of constant drift and diffusion coefficients, the estimated value of the projectile deceleration matches its analytically computed value depending on the system parameters and configuration. The established model presents a comparable predictive ability, as existing methods, of the V50 with the advantage of defining a bounded velocity interval in which the perforation probability varies from zero to one in accordance with the physical behavior of the system. Furthermore, the fitted model provides the probability perforation of the structure at any impact velocity with an estimate of its variability.

langue originaleAnglais
Pages (de - à)140-146
Nombre de pages7
journalInternational Journal of Impact Engineering
Volume102
Les DOIs
étatPublié - 1 avr. 2017

Empreinte digitale

Examiner les sujets de recherche de « Armor's ballistic resistance simulation using stochastic process modeling ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation