Accelerating existing non-blind image deblurring techniques through a strap-on limited-memory switched Broyden method

Ichraf Lahouli, Robby Haelterman, Joris Degroote, Michal Shimoni, Geert De Cubber, Rabah Attia

Résultats de recherche: Contribution à un journalArticleRevue par des pairs

Résumé

Video surveillance from airborne platforms can suffer from many sources of blur, like vibration, low-end optics, uneven lighting conditions, etc. Many different algorithms have been developed in the past that aim to recover the deblurred image but often incur substantial CPU-time, which is not always available on-board. This paper shows how a "strap-on" quasi-Newton method can accelerate the convergence of existing iterative methods with little extra overhead while keeping the performance of the original algorithm, thus paving the way for (near) real-time applications using on-board processing.

langue originaleAnglais
Pages (de - à)1288-1295
Nombre de pages8
journalIEICE Transactions on Information and Systems
VolumeE101D
Numéro de publication5
Les DOIs
étatPublié - mai 2018

Empreinte digitale

Examiner les sujets de recherche de « Accelerating existing non-blind image deblurring techniques through a strap-on limited-memory switched Broyden method ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation