A wavelet-based image denoising technique using spatial priors

A. Pizurica, W. Philips, I. Lemahieu, M. Acheroy

Résultats de recherche: Contribution à une conférence NON PUBLIEEPapierRevue par des pairs

Résumé

We propose a new wavelet-based method for image denoising that applies the Bayesian framework, using prior knowledge about the spatial clustering of the wavelet coefficients. Local spatial interactions of the wavelet coefficients are modeled by adopting a Markov Random Field model. An iterative updating technique known as iterated conditional modes (ICM) is applied to estimate the binary masks containing the positions of those wavelet coefficients that represent the useful signal in each subband. For each wavelet coefficient a shrinkage factor is determined, depending on its magnitude and on the local spatial neighbourhood in the estimated mask. We derive analytically a closed form expression for this shrinkage factor.

langue originaleAnglais
Pages[d]296-299
étatPublié - 2000
EvénementInternational Conference on Image Processing (ICIP 2000) - Vancouver, BC, Canada
Durée: 10 sept. 200013 sept. 2000

Une conférence

Une conférenceInternational Conference on Image Processing (ICIP 2000)
Pays/TerritoireCanada
La villeVancouver, BC
période10/09/0013/09/00

Empreinte digitale

Examiner les sujets de recherche de « A wavelet-based image denoising technique using spatial priors ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation