A syntactic characterization of weakly Mal’tsev varieties

Nadja Egner, Pierre-Alain Jacqmin, Nelson Martins-Ferreira

Résultats de recherche: Contribution à un journalArticleRevue par des pairs

4 Téléchargements (Pure)

Résumé

The notion of a weakly Mal’tsev category, as it was introduced in 2008 by the third author, is a generalization of the classical notion of a Mal’tsev category. It is well-known that a variety of universal algebras is a Mal’tsev category if and only if its theory admits a Mal’tsev term. In the main theorem of this paper, we prove a syntactic characterization of the varieties that are weakly Mal’tsev categories. We apply our result to the variety of distributive lattices which was known to be a weakly Mal’tsev category before. By a result of Z. Janelidze and the third author, a finitely complete category is weakly Mal’tsev if and only if any internal strong reflexive relation is an equivalence relation. In the last part of this paper, we give a syntactic characterization of those varieties in which any regular reflexive relation is an equivalence relation.

langue originaleAnglais
Pages (de - à)314-353
Nombre de pages40
journalTheory and Applications of Categories
Volume42
Numéro de publication12
étatPublié - 2024

Empreinte digitale

Examiner les sujets de recherche de « A syntactic characterization of weakly Mal’tsev varieties ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation