A SEGMENTAL APPROACH TO TEXT-INDEPENDENT SPEAKER VERIFICATION

J. Černocký, D. Petrovska-Delacrétaz, S. Pigeon, Patrick Verlinde, G. Chollet

Résultats de recherche: Chapitre dans un livre, un rapport, des actes de conférencesContribution à une conférenceRevue par des pairs

Résumé

Current text-independent speaker verification systems are usually based on modeling globally the probability density function (PDF) of the speaker feature vectors. In this paper, segmental approaches to text-independent speaker verification are discussed. Unlike the schemes based on Large Vocabulary Continuous Speech Recognition (LVCSR) with previously trained phone models, our systems are based on units derived in unsupervised manner using the ALISP (Automatic Language Independent Processing) tools. Speaker modeling is then done independently for each class of speech sounds. Among the techniques to merge the class-dependent scores, linear combination was tested and logistic regression and a method based on the Mixture of Experts technique are under investigation. The experimental results were obtained on the data from the NIST-NSA'98 campaign.

langue originaleAnglais
titre Proceedings of the 6th European Conference on Speech Communication and Technology, EUROSPEECH 1999
Pages2207-2210
Nombre de pages4
étatPublié - 1999
Evénement6th European Conference on Speech Communication and Technology, EUROSPEECH 1999 - Budapest, Hongrie
Durée: 5 sept. 19999 sept. 1999

Une conférence

Une conférence6th European Conference on Speech Communication and Technology, EUROSPEECH 1999
Pays/TerritoireHongrie
La villeBudapest
période5/09/999/09/99

Empreinte digitale

Examiner les sujets de recherche de « A SEGMENTAL APPROACH TO TEXT-INDEPENDENT SPEAKER VERIFICATION ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation