Résumé
This paper presents a fully integrated lock-in amplifier intended for nanowire gas sensing. The nanowire will change its conductivity according to the concentration of an absorbing gas. To ensure an accurate nanowire impedance measurement, a lock-in technique is implemented to attenuate the low frequency noise and offset by synchronous demodulation or phase-sensitive detection (PSD). The dual-channel lock-in amplifier also provides both resistive and capacitive information of the nanowire in separate channels. Measurement results of test resistors and capacitors show a 2% resolution in the resistance range 1040 kΩ and a 3% resolution in the capacitance range 0.51.8 nF. Moreover, a 28.732.1 kΩ impedance variation was measured through the lock-in amplifier for a single palladium nanowire that was exposed to a decreasing hydrogen concentration (10% H2 in N2 to air). The chip has been implemented with UMC 0.18 μm CMOS technology and occupies an area of 2 mm2. The power consumption of the readout circuit is 2 mW from a 1.8 V supply.
langue originale | Anglais |
---|---|
Pages (de - à) | 733-739 |
Nombre de pages | 7 |
journal | Microelectronics Journal |
Volume | 41 |
Numéro de publication | 11 |
Les DOIs | |
état | Publié - nov. 2010 |