Underwater threat recognition: Are automatic target classification algorithms going to replace expert human operators in the near future?

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper, different human/machine strategies are tested in order to evaluate their performance in underwater threat recognition. Sonar images collected using synthetic aperture sonar (SAS) and side scan sonar (SSS) during real mine countermeasures exercises are used. Data are collected over a test area on the Belgian Continental Shelf, where several targets were deployed. Image resolution is divided in three categories: (1) up to 5cm pixel size, (2) between 5cm and 10cm pixel size, (3) larger than 10cm pixel size. Soil complexity is also evaluated and used to build up different strategies. Results demonstrate the utility of considering the human operator as an integral part of the automatic underwater object recognition process, as well as how automated algorithms can extend and complement human performances.

Original languageEnglish
Title of host publicationOCEANS 2019 - Marseille, OCEANS Marseille 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728114507
DOIs
Publication statusPublished - Jun 2019
Event2019 OCEANS - Marseille, OCEANS Marseille 2019 - Marseille, France
Duration: 17 Jun 201920 Jun 2019

Publication series

NameOCEANS 2019 - Marseille, OCEANS Marseille 2019
Volume2019-June

Conference

Conference2019 OCEANS - Marseille, OCEANS Marseille 2019
Country/TerritoryFrance
CityMarseille
Period17/06/1920/06/19

Keywords

  • automatic target classification
  • human-in-the-loop
  • mine countermeasures
  • side-scan sonar
  • synthetic aperture sonar

Fingerprint

Dive into the research topics of 'Underwater threat recognition: Are automatic target classification algorithms going to replace expert human operators in the near future?'. Together they form a unique fingerprint.

Cite this