Trailing edge noise of innovative mini-RPA propeller blades geometry

Akila Halimi, Benoit G. Marinus, Salah Larbi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper aims at computing the trailing edge noise spectrum of an innovative mini- RPA propeller geometry and assessing the performance, in terms of noise reduction, when applying sawtooth serrations on its trailing edge. For that reason, a recent frequency- domain analytical model is implemented using a strip approach, where the blade is divided in a number of spanwise segments for which the corresponding mean flow and boundary layer quantities are evaluated from a CFD solution. The model is assessed by comparison with time-domain LBM simulations. The first order approximation is found to predict with a good accuracy the results but with higher computational cost. The number of segments affects the analytical solution and converge for a large number of segments. The results show that the serrations reduce the noise emitted by the propeller at low to mid frequencies but induces a noise increase at high frequencies. The sharpest serrations are the most effective in reducing the emitted noise. The study of the directivity patterns show that the trailing edge serrations do not modify the directivity of the radiated trailing edge noise and their effect on the radiated noise is independent of the observer position.

Original languageEnglish
Title of host publication2018 AIAA/CEAS Aeroacoustics Conference
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624105609
DOIs
Publication statusPublished - 2018
EventAIAA/CEAS Aeroacoustics Conference, 2018 - Atlanta, United States
Duration: 25 Jun 201829 Jun 2018

Publication series

Name2018 AIAA/CEAS Aeroacoustics Conference

Conference

ConferenceAIAA/CEAS Aeroacoustics Conference, 2018
Country/TerritoryUnited States
CityAtlanta
Period25/06/1829/06/18

Fingerprint

Dive into the research topics of 'Trailing edge noise of innovative mini-RPA propeller blades geometry'. Together they form a unique fingerprint.

Cite this