Study of the influence of pre-processing on local statistics-based anomaly detector results

Dirk Borghys, Christiaan Perneel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Anomaly detection in hyperspectral data has received much attention for various applications and is especially important for defense and security applications. Anomaly detection detects pixels in the hyperspectral data cube whose spectra differ significantly from the background spectra [1]. Most existing methods estimate the spectra of the (local or global) background and then detect anomalies as pixels with a large spectral distance w.r.t. the determined background spectra. Many types of anomaly detectors have been proposed in literature. This paper reports on a sensitivity study that tries to determine an adequate pre-processing chain for anomaly detection in hyperspectral scenes. The study is performed on a set of five hyperspectral datasets and focuses on statisticsbased anomaly detectors.

Original languageEnglish
Title of host publication2nd Workshop on Hyperspectral Image and Signal Processing
Subtitle of host publicationEvolution in Remote Sensing, WHISPERS 2010 - Workshop Program
DOIs
Publication statusPublished - 2010
Event2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2010 - Reykjavik, Iceland
Duration: 14 Jun 201016 Jun 2010

Publication series

Name2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2010 - Workshop Program

Conference

Conference2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2010
Country/TerritoryIceland
CityReykjavik
Period14/06/1016/06/10

Keywords

  • Anomaly detection
  • Data reduction
  • Pre-processing
  • Spectral normalization

Fingerprint

Dive into the research topics of 'Study of the influence of pre-processing on local statistics-based anomaly detector results'. Together they form a unique fingerprint.

Cite this